Cardiovascular (CVD) Risk Management Guidelines for Primary Health Care Providers

Dr Arundika Senaratne
Consultant Community Physician
Directorate of NCD

Cardiovascular Risk Management Guidelines for Primary Health Care Providers

Cardiovascular Risk Management Guidelines for Primary Health Care Providers

Objectives

- To identify the eligible population for cardiovascular risk assessment
- To take history, perform a clinical examination and do basic investigations
- To predict the 10 -year cardiovascular risk
- To provide cardiovascular risk management as per the risk status
- To offer lifestyle modification
- To offer drug treatment and arrange long-term follow up

What is the 10 year CVD risk?

- It is the level of risk of a fatal or non-fatal major cardiovascular event (i.e. heart attack or stroke), which is expressed as probability of developing it in 10 years
- It is determined with simple risk-scoring tools and calculated as the combined effect of multiple risk factors (age, gender, smoking status, blood pressure, diabetes status, history of CVD and total cholesterol or body mass index)

Benefits of risk based approach

- Can reduce number of clinical events and premature deaths
- Identify high risk patients with no history of CVD and initiate early preventive interventions
- Useful for individuals with a history of CVD and follow up of clients
- Cost effective strategy especially in limited resource settings

Eligibility Criteria to use this guide

1. Category A. Age ≥ 35 years -CVD risk assessment done
2. Category B. Age between 20-34 years with risk factors-CVD risk assessment not done

Management of Category bis:

- Offer lifestyle modification for all
- refer to specialist for management, if single risk factors identified

Predict the 10-year cardiovascular risk

CVD risk prediction charts should not be applied to those:

- Who have established cardiovascular disease (ischemic heart diseases, stroke/TIA, peripheral vascular disease)
- With renal dysfunction
- With diabetic nephropathy

But these categories are at high risk for CVD

- Aged less than 35years
- offer life style modification
- management based on individual risk factors (refer to specialist)

Predict the 10-year cardiovascular risk

- Use WHO/ISH Cardiovascular Risk Prediction Chart.
- Categorize cardiovascular risk as $<10 \%, 10 \%$ to $<20 \%, 20 \%$ to $<30 \%$, and $\geq 30 \%$.
- If total cholesterol testing could not be arranged use the mean value $5 \mathrm{mmol} / \mathrm{I}(200 \mathrm{mg} / \mathrm{dl})$ for CVD risk assessment
- When applying the CVD risk assessment for ages 35-40 years use the age category 40-49 of risk prediction chart
- Communicate to the patient the benefits of minimizing the risk and what could be done to minimize the risk to $<10 \%$
$\begin{array}{lll}\text { Risk Level } & 10 \% & 10 \% \\ & \text { SEAR B People with Diabetes Mellitus }\end{array}$

Age
Gender
Systolic BP
Total cholesterol
Smoking status DM

A 62-year-old male a smoker no diabetes
total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg

A 62-year-old male a smoker no diabetes
total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg

Figure 21. WHO/ISH risk prediction chart for SEAR B. 10 -year risk of a fatal or non-fatal cardiovascular event by gender, age, systolic blood pressure, total blood cholesterol, smoking status and presence or absence of diabetes mellitus.
Risk Level $\quad<10 \% \quad 10 \%$ to $<20 \% \quad-\quad 20 \%$ to $<30 \% \square 30 \%$ to $\quad \square 0 \%-\square$

This chart can only be used for countries of the WHO Region of South-East Asia, sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

A 62-year-old male

 a smoker no diabetes total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg

This chart can only be used for countries of the WHO Region of South-East Asia, sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

A 62-year-old male a smoker no diabetes total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - $150 / 90 \mathrm{mmHg}$ status and presence or absence of diabetes mellitus.

This chart can only be used for countries of the WHO Region of South-East Asia, sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

A 62-year-old male
a smoker no diabetes
total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg

Figure 21. WHO/ISH risk prediction chart for SEAR B. 10 -year risk of a fatal or non-fatal cardiovascular event by gender, age, systolic blood pressure, total blood cholesterol, smoking status and presence or absence of diabetes mellitus.
Risk Level $\quad<10 \% \quad \square 10 \%$ to $<20 \% \quad \square \quad 20 \%$ to $<30 \% \quad \square \quad 30 \%$ to $<40 \%$ SEAR B People with Diabetes Mellitus

SEAR B People without Diabetes Mellitus

This chart can only be used for countries of the WHO Region of South-East Asia, sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

A 62-year-old male
a smoker
no diabetes
total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg status and presence or absence of diabetes mellitus.

SEAR B People with Diabetes Mellitus

SEAR B People without Diabetes Mellitus

This chart can only be used for countries of the WHO Region of South-East Asia sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

A 62-year-old male a smoker no diabetes total cholesterol - $7 \mathrm{mmol} / \mathrm{L}$ BP - 150/90 mmHg

This chart can only be used for countries of the WHO Region of South-East Asia, sub-region B, in settings where blood cholesterol can be measured. (see Table 1)

CV risk management as per the risk status

$B P<140 /<90 \mathrm{mmHg}$

- offer lifestyle modifications
- assess CVD risk every year

BP 140-159/90-99mmHg

- offer lifestyle modifications
- repeat BP measurements after 3 months
BP continues to be $140-159 / 90$
-99 mmHg , despite life style modification
- commence anti-hypertensives, long term follow up
- Review CVD risk annually

BP <140/<90mmHg

- offer lifestyle modifications
- assess CVD risk every 6 months

BP 140-159/90-99mmHg

- offer lifestyle modifications
- repeat BP measurements after 3 months
BP continues to be 140-159/90 -
99 mmHg despite life style modification
- commence anti-hypertensives, long term follow up
- Review CVD risk every 6 months
- Offer lifestyle modifications
- Start Statin (atorvastatin 20 40mg daily)
review total cholesterol after 3 months

$B P \geq 140 / \geq 90 \mathrm{mmHg}$

-commence anti-hypertensive drugs -review BP monthly and optimize drug treatment
-review CVD risk after 6 months

If risk remains $\geq 20 \%$ after 6 months of optimal interventions
-refer to a specialist clinic

CVD risk prediction charts-updated in 2019

2007
 2019

The WHO \& ISH CVD risk prediction charts were first developed

Updated charts were developed and presented

Helps improve the accuracy of the CVD risk estimate for each individual

2007 WHO \& ISH risk chart

 14 WHO epidemiological sub - regions represented
2019 WHO risk chart

 21 IHME GBD*regions with more similarity in grouping of countries

* Institute for Health Metrics and Evaluation; Global Burden of Disease

2007 risk prediction chart

- Risk charts used in settings where blood cholesterol can be measured
- Risk charts used in settings where blood cholesterol cannot be measured

2019 risk prediction chart

- Laboratory-based charts
- Non-laboratory-based charts

2007 risk prediction chart
 Without individual cholesterol values

2019 risk prediction chart
 Non-laboratory based

Laboratory-based charts

Non-laboratory-based charts

- Age
- Sex
- Smoking
- Systolic blood pressure
- Presence or absence of diabetes
- Total cholesterol
- Age
- Sex
- Smoking
- Systolic blood pressure
- BMI

Laboratory-based charts

Used for treatment decisions

Non-laboratory-based charts

Used for decisions
regarding referral

2007 risk prediction chart

2019 risk prediction chart

WHO cardiovascular disease risk laboratory-based charts
Southeast Asta
Indonesia, Cambodia, Lao PDR, Sri Lanka, Maldives, Myanmar, Malayia, Philippines, Thailand, Timor-Lete. Viet Nam, Mauritius, Seychelle

WHO cardiovascular disease risk non－laboratory－based charts Southeast Asla
Indonesia，Cambodia，Lao PDR，Sri Lanka，Maldives，Myanmar，Malaysia，Philippines，Thailand，Timor－Leste，Viet Nam，Mauritius，Seychelle

Risk Lev				＜5\％			5\％to	0×10			\％10	20\％			20\％	c305			230\％		
Non－thborricry besed risk chat																					
$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Men										Women										SEP
	Non－3moke					Smat					Nonsmoter					Smot					（mmity）
			31	13	34	34	36	33	41	44		\％				30	11	I2	17		2^{180}
							30	12	3	$3{ }^{36}$	11	is	19	T0							9
70.74	17	19							$=$	30	15	15	10	10	17						140.159
	14	13	10	17	18	11					12	12	13	ㅍ	14	17	111	19	19		120.139
	11	12	13	19	13	15	76	11	ㅍi］		10	10	11	11	17	12	15	15	10	［11	＜120
65．69							39	11	36］	39	$1{ }^{16}$	17	18	II	19					30	\geq^{180}
	16	17	19						\cdots	31	13	14	14	13	15						160.179
	12	19	15	16	12	11	19				11	11	11	12	12	17	T01	11	19		140.159
	10	11	12	\square	14	14	15	16	11		9	9	9	10	10	17	14	13	15	16	120．139
	0	a	4	10	II	11	12	13	19	［10］	，	，	1	1	0	11	13	13	隹	13	¢120
60.64	15	11	19					\square	31	34	71	13	14	19	13						2^{180}
	12	13	19	16	囯	11			－		15	10	11	파	12	1）	11	19			160.17
	\checkmark	10	11	12	14	14	15	17	19		－	I	1	9	\bigcirc	13	14	15	16	10	140.159
	7	a	1	4	10	12	12	11	14	10	6	＊	1	1	1	11	11	12	12	17	139
	5	－	－	，	1	\square	9	10	11	12	5	5	5	5	＊	0	\because	\square	10	10	－120
55.59	12	13	15	10	同	17				30	10	10	11	11	同	10	T19				2^{180}
	7	10	II	12	14	14	10	111			0	\square	－	\bigcirc	9	14	15	15	18	［71	160.179
	1	7	8	9	10	11	12	13	15	11	6	6	5	7	7	11	11	12	B	13	140.159
	5	5	6	1	$\#$	4	4	10	11	13	4	5	5	5	5	8	＊	9	10	10	120.139
		4	4	5	－	\square	7	1	1	10	3	1	4	4		6	1	1	1	．	＜120
50.54	9	19	11	13	17	15	11				\square	1	1	9	9	11	10	7	Ti1	17	2^{180}
	7	1	${ }^{\prime \prime}$	9	11	11	13	18	171		0	\square	${ }^{\circ}$	1	1	11	12	13	14	14	160．179
	5	5	4	7	＂	\＃	\uparrow	11	12	14	4	4	5	5	5	－	\％	10	10	11	140－159
	3	4	4	5	6	6	，	${ }^{\prime}$	\cdots	11	1	3	1	4	4	6	7	，	0	\square	120.139
	2	3	1	1	4	4	5	－	7	\＃	2	2	3	1	1	5	5	5	，	6	${ }^{120}$
45.49	7	0	9	10	12	13	15	17			6	6	7	7	1	13	14	71	15	16	2^{1100}
	5	6	6	7	0	9	10	12	17	T1	5	5	5	5	9	9	10	17	II	12	160.179
	3	4	4	5	－	6	1	9	10	12	3	1	1	4			7	＂	π	－	140．159
	2	3	1	4	4	．	5	6	7	0	2	2	2	1	1	8	5	6	6	－	120.139
	2	3	2	2	1	1	4	＋	5	\square	2	2	3	3	2	4	1	4	4	5	＜120
14	5	6	7	－	10	10	12	14	11		5	5	5	5	${ }^{\circ}$	11	11	12	13	14	2^{190}
	4	4	5	6	1	7	1	10	12	14	1	3	4	4		－	1	＋	－	10	180.179
	2	1	1	4	4	5	6	7	\square	10	2	2	1	1	1	5	6	－	，	7	140.159
	2	2	2	1	1	3	4	5	6	1	2	2	J	2	2	4	4	4	1	5	120.129
	1	1	2	3	3	2	1	1	1	5	1	1	1	1	1	1	1	1	1	4	420
	\％	䧲	$\begin{aligned} & \text { 合 } \end{aligned}$	$\begin{aligned} & \text { 敋 } \end{aligned}$	$\underset{\sim}{n}$	9	茄	$\stackrel{y}{y_{\mathrm{B}}}$	$\begin{aligned} & \frac{n}{6} \\ & \hline \end{aligned}$	$\underset{\sim}{\text { nass }}$	8	癹 $9 \mathrm{~m}^{2} 2$		$\begin{aligned} & \text { 呂 } \\ & \hline \end{aligned}$	${ }_{\sim}^{5}$	8	苟	$\begin{aligned} & \hline \stackrel{8}{\mathrm{~g}} \\ & \text { in } \end{aligned}$	$\frac{\sqrt{2}}{8}$	$\underset{\sim}{n}$	

Advise the patient and family

- Education-
- Explain what is CVD risk
- Complications,
- Management, follow up
- Drug compliance
- Motivation-
- Adhere treatment
- Written instructions
- On PMR
- Education materials

Lifestyle modifications

- Weight control- Maintain correct BMI

Low calorie diet
Increased physical activity

- Dietary Changes

Reduce salt intake
Restrict sugar consumption
Increase fruit and vegetable intake
Limit fat /Trans fat intake

- Physical activity
- Tobacco cessation
- No alcohol

Thank you

